Initiative C

Title
Deep-mining into multi-cellular human samples: a workflow to analyse macromolecular structures in Health and Disease

Initiators

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Peters</td>
<td>Maastricht University</td>
<td>Cryo-electron microscopy, Nanoscopy, Cell Biology, organoids</td>
</tr>
<tr>
<td>Jacob Hoogenboom</td>
<td>Technical University Delft</td>
<td>3D correlative Light and Electron Microscopy</td>
</tr>
<tr>
<td>Bart Beulen</td>
<td>CryoSol-World B.V.</td>
<td>Vitrification, engineering, operational testing, integration, marketing</td>
</tr>
<tr>
<td>Sander den Hoedt</td>
<td>Delmic B.V.</td>
<td>Imaging, engineering, integration, marketing</td>
</tr>
</tbody>
</table>

Description

Cryo-electron microscopy (cryo-EM) has emerged as a powerful enabling technology to visualize the 3D structure of macromolecular complexes, providing fundamental insight in structure-function relationships needed to develop novel nanomedicines. It has resolved many novel isolated macromolecular complexes at ultra-high resolution. However, to fully understand the role of such complexes in Health and Disease, we need to study them in a complex multi-layered cell environment, such as a biopsy or an organoid.

Organoids are now used to study human physiology and pathology in a dish. They act as a potential replacement of animals in scientific research, and have been used to study disease such as cancer and infectious diseases. Typical sizes are a few hundred micrometers: 4 orders of magnitude larger than the size of important macromolecular players that can derail the development of a healthy organoid. Cryo-EM has the potential to provide deep structural and functional insight into these macromolecular player, within the context of such complex human environment.

However, next generation user-friendly high tech equipment would be needed for doing so. In this proposal, we will develop, demonstrate and validate the machinery needed to vitrify multi-layered samples, target regions of interests, trim those under cryogenic conditions, collect cryo-electron tomograms, segment these and apply sub-tomogram averaging techniques. Artificial intelligence will be used to identify regions of interest both within the original samples as well as the final tomograms, and AI-driven feedback loops will be developed to maximise throughput. If successful, our equipment will provide an unprecedented insight into life itself.

Needed expertise

This project will require expertise in organoid research, vitrification, multi-modal imaging, structural biology, data processing, engineering, artificial intelligence, advanced mechatronics, sociology (of the cell and between cells), industrial design and business administration.

Contact person

Anita Mühlegger, pa-nanoscopy@maastrichtuniversity.nl
Faculty of Health, Medicine & Life Sciences
M4I – Maastricht MultiModal Molecular Imaging Institute
Universiteitsringel 50 | location: UN550, K5.459 | 6229 ER Maastricht | PO Box 616 | 6200 MD Maastricht
+31 6 39 60 19 88