Induced aseismic slip and the onset of seismicity in displaced faults

Jan Dirk Jansen1, Pavan Cornelissen1, Bernard Meulenbroek2

Delft University of Technology
1) Department of Geoscience and Engineering
2) Delft Institute of Applied Mathematics
Science4Steer – towards operational control

• Aim: A scientific basis for developing production and reinjection strategies to minimize induced seismicity
• 5-year program at TU Delft and Utrecht University - part of DeepNL
• Combined experimental and numerical approach

WP 1: Lab-scale compaction experiments
WP 2: Lab-scale friction experiments
WP 3: Lab-scale friction and seismicity exp.
WP 4: Model development and upscaling
WP 5: Multi-scale simulation of multi-well/fault
WP 6: Optimal control to minimize seismicity

Mark Jefferd
Suzanne Hangx
Jianye Chen
Hadi Mehranpour
Chris Spiers
Milad Naderloo
Auke Barnhoorn

Aleks Novikov
Denis Voskov
Sara Shokrollahzadeh Behbahani
Hadi Hajibeygi
Pavan Cornelissen
Jan Dirk Jansen

Increasing spatial scale
Science4Steer – WP 3; Lab Experiments

- Investigators: Milad Naderloo and Auke Barnhoorn @ TU Delft
- Triaxial cell with 30 x 30 x 30 cm blocks
- Induced seismicity resulting from differential pressure and/or pressure decline in displaced faults
Science4Steer – WP 3; Lab Experiments

- Investigator: Milad Naderloo and Auke Barnhoorn @ TU Delft
- Triaxial cell with 30 x 30 x 30 cm blocks
- Induced seismicity resulting from differential pressure and/or pressure decline in displaced faults
Science4Steer – WP 3; Lab Experiments

- Investigator: Milad Naderloo and Auke Barnhoorn @ TU Delft
- Triaxial cell with 30 x 30 x 30 cm blocks
- Induced seismicity resulting from differential pressure and/or pressure decline in displaced faults
Earlier work – numerical

2D displaced normal fault model

Fault throw: \(t = b - a \)
Reservoir height: \(h = a + b \)
Also known as “elastic thin sheet”
Inclusion theory (1)

Elsheby, 1957: cut and weld operation to simulate response to inelastic deformation (e.g. thermal strain, dislocations, pore pressure)

Total strains = elastic strains + eigen strains: $\epsilon_{ij} = e_{ij} + \epsilon_{ij}^*$

For porous media: $\epsilon_{ij}^* \delta_{ij} = \frac{\epsilon^*}{3} = \frac{\alpha p}{3K}$
Inclusion theory (2)

After several steps:

\[u_i(x, y) = D \int \int_{\Omega} g_i(x, y, \zeta, \xi) \, d\Omega, \]

\[\sigma_{ij}(x, y) = C \left[\int \int_{\Omega} g_{ij}(x, y, \zeta, \xi) \, d\Omega - 2\pi \delta_{ij} \right] \]

where

\[D(\zeta, \xi) = \frac{(1 - 2\nu) \alpha p}{2\pi (1 - \nu) G}, \quad C = GD \]

and \(g_i \) and \(g_{ij} \) are Green’s functions for \(u_i \) and \(\sigma_{ij} \).

Link to “nucleus of strain” concept: Rudnicki (2002)
Typical integral (for rectangle)

\[
\frac{\sigma_{xx}}{C} (x, y) = \int_p^q \int_r^s g_x(x, y, \zeta, \xi) d\xi d\zeta
\]

\[
= \left\{ \ln \left[(x - q)^2 + (y - \frac{\sigma_{xx}}{C}) \right] - \ln \left[(x - p)^2 + (y - s)^2 \right] \right\} \times \frac{y - s}{4}
\]

\[
- \left\{ \ln \left[(x - q)^2 + (y - r)^2 \right] - \ln \left[(x - p)^2 + (y - r)^2 \right] \right\} \times \frac{y - r}{4}
\]

\[
+ \left\{ \arctan \left(\frac{y - s}{x - q} \right) - \arctan \left(\frac{y - r}{x - q} \right) \right\} \times \frac{x - q}{2}
\]

\[
- \left\{ \arctan \left(\frac{y - s}{x - p} \right) - \arctan \left(\frac{y - r}{x - p} \right) \right\} \times \frac{x - p}{2}
\]
Incremental stresses due to injection
Incremental stresses due to injection
Stresses - definitions

Solid mechanics: tension positive; compression negative
Soil mechanics: compression positive; tension negative

Soil mechanics: $\sigma = \sigma' + p$ (Terzaghi) or $\sigma = \sigma' + \alpha p$ (Biot)
Solid mechanics: $\sigma = \sigma' - p$

$0 << \alpha < 1$: Biot coefficient (measure of grain compressibility)
Total stresses: σ; effective stresses: σ'

Initial total stresses: σ^0 (representing geological history)
Incremental total stresses: σ (due to injection or depletion)
Same for effective stresses: σ^0' and σ'
Stresses and slip boundaries

\[p^0 = 35 \text{ MPa} \]
\[p = 20 \text{ MPa} \]
\[p^{tot} = 55 \text{ MPa} \]
Stresses and slip boundaries

\[p = 20 \text{ MPa} \]
Stresses and slip boundaries: \[\sigma^{slip} = \pm \mu \sigma_{xx} \]

\[p = 20 \text{ MPa} \]
Stresses and slip boundaries

\[p = 20 \text{ MPa} \]
Injection and production

SCU = 0.88 @ $\mu_{st} = 0.6$
SCU = 1.05 @ $\mu_{dyn} = 0.5$

$p = 0 \text{ MPa}$

\begin{align*}
&\text{a) Stresses (injection) (MPa)} \\
&\text{b) Stresses (production) (MPa)}
\end{align*}
Injection and production

\(p = 5 \text{ MPa} \)

\(p = -5 \text{ MPa} \)
Injection and production

$p = 5 \text{ MPa}$

$p = -5 \text{ MPa}$

Slip
Injection and production

\[p = 20 \text{ MPa} \]

\[p = -20 \text{ MPa} \]
Injection and production

$p = 35 \text{ MPa}$

![Graph showing stresses for injection at $p = 35 \text{ MPa}$](image)

$p = -35 \text{ MPa}$

![Graph showing stresses for production at $p = -35 \text{ MPa}$](image)
Injection and production

a) Stresses (injection) (MPa)
b) Stresses (production) (MPa)
Scaled stresses in the fault

Normal stresses

Shear stresses
Shear stresses and slip boundary in case of no-slip

- Even small depletion results in (small) slip (if we forget about healing)
- Numerical results that show a “non-slip depletion threshold” should be mistrusted – probably a grid effect

Singularities at $y = \pm a, y = \pm b$
Coulomb stresses in case of no-slip

\[\sigma_C = \sigma_\parallel - \mu \sigma_\perp \]
Shear stresses around a dislocation

\[
\bar{\sigma}_{xy}(x, y) = \frac{\lambda G}{2\pi(1-\nu)} \frac{y(y^2 - x^2)}{R^4}
\]
Shear stresses and slip around dislocations
Slip around a distributed dislocation

\[
\tilde{\sigma}_\parallel(y) = A \int_{y_-}^{y_+} \frac{\chi'(\xi)}{y - \xi} \, d\xi;
\]

\[
A = \frac{G}{2\pi(1 - \nu)},
\]

\[
\chi'(\xi) = \left. \frac{\partial \lambda(y)}{\partial y} \right|_{y = \xi},
\]

\[
\int_{y_-}^{y_+} \frac{\chi'(\xi)}{y - \xi} \, d\xi = \lim_{\epsilon \downarrow 0} \int_{y_-}^{y_+ - \epsilon} \frac{\chi'(\xi)}{y - \xi} \, d\xi + \lim_{\epsilon \downarrow 0} \int_{y_+ + \epsilon}^{y_+} \frac{\chi'(\xi)}{y - \xi} \, d\xi.
\]
Frictionless vertical fault (1)

\[\bar{\sigma}_||(y) = A \int_{y_-}^{y_+} \frac{\lambda'(\xi)}{y - \xi} \, d\xi; \]

\[\bar{\sigma}_|| = \bar{\sigma}_{xy} = \frac{Ac}{2} \ln \left[\frac{(y - y_+)^2}{(y - y_-)^2} \right] \]
Frictionless vertical fault (2)

\[\tilde{\sigma}_\parallel(y) = \gamma C \left(\int_{-b}^{-a} \frac{-1}{y - \xi} d\xi + \int_{a}^{b} \frac{1}{y - \xi} d\xi \right) = -\frac{\gamma C}{2} \times \ln \left[\frac{(y - a)^2(y + a)^2}{(y - b)^2(y + b)^2} \right] \]
Inverse relationship

\[\bar{\sigma}_\parallel(y) = A \int_{y_-}^{y_+} \frac{\lambda'(\xi)}{y - \xi} \, d\xi; \]

\[\lambda'(y) = -\frac{\sqrt{(y - y_-)(y_+ - y)}}{\pi^2 A} \int_{y_-}^{y_+} \frac{\bar{\sigma}_\parallel(\xi)}{\sqrt{(\xi - y_-)(y_+ - \xi)(y - \xi)}} \, d\xi, \]

provided that

\[\int_{y_-}^{y_+} \frac{\bar{\sigma}_\parallel(y)}{\sqrt{(y - y_-)(y_+ - y)}} \, dy = 0 \]

\[\int_{y_-}^{y_+} \frac{y \bar{\sigma}_\parallel(y)}{\sqrt{(y - y_-)(y_+ - y)}} \, dy = 0 \]
Segall (2010) – Chebyshev polynomials
Coulomb stresses in case of no-slip

\[\sigma_C = \sigma_\parallel - \mu \sigma_\perp \]
Slip for constant Coulomb-type friction

\[\mu(y, t) = \mu_{st} = 0.52. \]
Slip patch boundaries – Coulomb-type friction
Slip patch boundaries – Slip-weakening friction
Slip patch boundaries – Slip-weakening friction

Nucleation: eigenvalue/vector problem (Uenishi and Rice 2003)
Effect of fault throw

Nucleation pressure

Nucleation patch length

Seismic moment

\[t/h = 0 \quad t \text{ (m)} \quad t/h = 1 \]
Take home messages:

- Injection results in Coulomb stress peaks at the external reservoir/fault corners; depletion produces stress peaks at the internal corners.
- Injection results in slip patches growing outward; depletion in patches growing inward (and possibly merging)
- Searching for a “slip free” incremental pressure is not very meaningful. Numerical results are mesh-dependent.
- Positive Coulomb stresses correspond to potential slip patches. Once slip actually occurs the corresponding patches are somewhat larger.
- Induced slip may be aseismic or seismic: nucleation (i.e. unstable patch growth) requires a reduction in slip resistance with increasing slip: slip weakening, velocity weakening or “rate and state dependent” friction. Lithology dependent!
- Maximum stresses shear stresses occur for dimensionless fault throw \(t/h = 1 \); maximum seismic moment however for intermediate throws.
References

Directly related to this presentation

• Jansen, J.D. en Meulenbroek, B.J., 2022.: Induced aseismic slip and the onset of seismicity in displaced faults. *Netherlands Journal of Geosciences* **101** e13. https://doi.org/10.1017/njg.2022.9

Recommended further reading

