Klimaatvriendelijke landbouwbodems (NWA)

Klimaatvriendelijke landbouwbodems (NWA)

De call Klimaatvriendelijke landbouwbodems richt zich op de vraag wat de bijdrage van landbouwbodems kan zijn aan het halen van de klimaatdoelstellingen. Het onderzoek moet leiden tot meer kennis over de vastlegging van koolstof in minerale bodems, vermindering van emissie van andere broeikasgassen en mogelijkheden voor toepassing van die kennis.

  • Doel en doelstellingen

    In de komende jaren staat de Nederlandse landbouw voor de grote uitdaging om een reductie in uitstoot van broeikasgassen te leveren. Het vastleggen van CO2 in bodems en het verlagen van uitstoot van andere broeikasgassen kan helpen deze doelstellingen te behalen.

    Koolstofvastlegging in landbouwbodems kan leiden tot een verhoging van uitstoot van vaak sterkere broeikasgassen, zoals lachgas. Daarbij spelen de samenstelling van de bodem, de aanvoer van verschillende soorten organische stoffen en het stikstofgebruik een grote rol. Maar kennis over de interventies die koolstofvastlegging mogelijk maken en de mechanismes in de bodem die leiden tot emissie van andere broeikasgassen is vaak nog beperkt.

    Het doel van het programma is het verkrijgen van meer fundamentele kennis over het proces van koolstofvastlegging in landbouwbodems en verminderen van andere broeikasgassen, met name lachgas, en een basis te leggen om tot haalbare en schaalbare toepassingen te komen die in de maatschappij kunnen worden ingevoerd.

    De call kent drie hoofdthema’s:

    1. Verminderen van lachgasemissies vanuit de bodem
    2. Koolstofvastlegging in minerale landbouwbodems
    3. Haalbaarheid en schaalbaarheid

  • Budget en doorlooptijd

    In totaal is een budget van 2,76 miljoen euro beschikbaar. Daaruit kunnen twee projecten gefinancierd worden met een maximum van 1,38 miljoen euro per aanvraag. De projecten hebben een looptijd van minimaal vier en maximaal zes jaar. Kennisinstellingen en maatschappelijke partijen, zoals bedrijven en overheden, nemen deel.

  • Partners

    De initiatiefnemers van deze call zijn de ministeries van Economische Zaken en Klimaat (EZK) en Landbouw, Natuur en Voedselkwaliteit (LNV). Zij zijn tevens financier van de call. 

Initiatieven

De  deadline voor het indienen van een initiatief was 1 juli 2021. Onderstaande initiatieven zijn ingediend. Bij interesse om te participeren in een initiatief kunt u zich tot de indiener richten

  • MicroSync: Synchronizing microbial traits and organic inputs to optimize soil carbon storage and reduce greenhouse gas emissions

    Soil is the largest reservoir of organic carbon on earth and increasing soil carbon storage is key to mitigate global warming and improve soil quality for agricultural production. In the agri-food system substantial amounts of organic carbon enter the soil as plant inputs, manures and organic residues. However, most is rapidly lost back to the atmosphere through microbial respiration, which could be accompanied by the formation of powerful greenhouse gases (GHG) such as N2O. Simply applying more organic inputs is not enough to improve carbon storage – it is essential to keep the carbon in soils over longer periods of time. We propose that synchronizing properties of soil microbial communities (traits) and organic inputs (stoichiometry) is key to enhancing carbon retention: providing the right carbon to the right microbes at the right time. This can stimulate microbial efficiency and promote production of microbial biomass which can bind to soil minerals and aggregates for longer periods of time (> decades). Achieving synchronization requires that long-term farm management and fluxes of carbon through the food system fit with microbial activities and stoichiometry. The aim of our project is to apply a dynamic trait-based approach to understand how microbes, management and soil environment are best combined to achieve optimal carbon storage and minimize GHG emissions within a productive and realistic agronomic food system. We use field and laboratory experiments to modify microbial traits, carbon inputs, and management, and will trace carbon and nutrients through the microbial community into soil carbon fractions and GHGs. This process-focussed approach will be embedded in farm practice and food system modelling to design management options tailored to different social-economic-demographic circumstances. Our project provides a fundamental understanding and practicable context for synchronizing microbial traits and organic inputs for optimal agronomic and climate outcomes that respect human and planetary health. 

    Initiator

    Ciska Veen; Emilia Hannula; Kyle Mason-Jones

    Contact person

    Ciska Veen

    Email adress

    c.veen@nioo.knaw.nl

  • Synergies of biogeochemical mechanisms to promote carbon sequestration and decrease nitrous oxide emissions in managed grasslands

    Grasslands have large potential as carbon (C) sink. This can be increased through proper management and enhanced understanding of the underlying biogeochemical mechanisms in the C and nitrogen (N) cycles. However, managed grasslands are also associated with substantial nitrous oxide (N2O) emissions which may negate any gains in C sequestration. Promoting organic inputs may facilitate C-sequestration, whereas optimised nutrient management can decrease N2O emissions. Moreover, C-sequestration could further be promoted via enhanced mineral weathering. To date the processes underlying CO2 and N2O emissions are mostly studied separately. 
    Here we propose to understand and quantify interactions between the C and N cycles and their effect on CO2 and N2O emissions. We focus on two management options for farmers: (i) grassland renewal, which is a pivotal moment in terms of C and N dynamics; and (ii) basalt application to facilitate enhanced silicate weathering and inorganic C sequestration. Our study will focus on three grassland-based systems: permanent grassland, renewed grassland (ploughed and reseeded), and a grassland-arable land rotation. In each system, basalt applications as well as several fertilizers are applied at specific times and locations to promote C sequestration and to reduce N2O emission. Our approach combines a smart rethinking of established management practices (grassland renewal and fertilisation) with the first use of a promising new technique, enhanced silicate weathering, in Dutch managed grassland soils. 
    TNO and WEnR will measure CO2 and N2O emissions at a high spatio-temporal resolution with novel techniques. Soil Biology and Soil Chemistry of WU will unravel the underlying biological and chemical processes. WEnR will apply the results in recommendations for farmers and policy makers and will ensure that they can be used in the Pollution Release and Transfer Register. Various stakeholders will be involved in the project and several events will be organized to engage citizens.

    Initiator(s)

    Gerard Velthof, Wageningen Environmental Research;Gerlinde De Deyn, Soil Biology, Wageningen University;Jan Willem van Groenigen, Soil Biology, Wageningen University;Mathilde Hagens, Soil Chemistry and Chemical Soil Quality, Wageningen University;Arjan Hensen, TNO;Mart Ros, Wageningen Environmental Research

    Contact person

    Gerard Velthof

    Email adress

    gerard.velthof@wur.nl

  • Harnessing root-microbe-mineral interactions for climate-friendly soils

    Interactions between roots and soil microbes are central to soil functioning: they determine the balance between carbon that is locked up in the soil and that leaves the soil as CO2, as well as the balance of nitrogen that is locked up in the soil, delivered to the plant, or lost through leaching or denitrification. Despite understanding these general mechanisms, we still have limited understanding of the role of root traits and microbial identities, and their interactions with soil mineralogy. Moreover, we do not know how these interactions respond to a changing climate. Here, we will elucidate the role of root-microbe-mineral interactions for the fate of soil C and N under a future climate in grasslands of the Netherlands. In collaboration with Eurofins and CBS, we will combine existing long-term data with geospatial information to identify how land use affects changes in soil C and N storage. Using our connections with farmer’s networks, we will set up a network of field sites in grasslands of contrasting management in all regions and mineral soil types in the Netherlands. At each site, ecosystem C and N fluxes will be monitored in situ, under ambient conditions and under summer drought and heating. In addition, intact soil cores from each site will be used in a mechanistic greenhouse experiment with detailed climate simulations following KNMI climate scenarios. Through co-creation with farmers and based on results from the field sites, we will identify promising forage species for use in large, outdoor mesocosms of different soil types, which will be subjected to climate simulations. Detailed analysis of C and N flows through the plant-root-microbe-mineral system in these experiments will advance our fundamental understanding of what constitutes a climate-friendly soil, and allow for regional-scale projections of C sequestration and greenhouse gas emissions under current and future climates.

    Initiator(s)

    Universiteit van Amsterdam;Eurofins;Centraal Bureau voor de Statistiek (CBS)

    Contact person

    Franciska de Vries

    Email adress

    f.t.devries@uva.nl

  • Climate proof soils by steering soil and residue microbiomes (ClipsMicro)

    Increasing carbon sequestration while lowering GHG emissions and maintaining crop yields is one of the biggest societal and scientific challenges. Sequestering and preserving soil organic carbon (SOC) in arable sandy soils is particularly challenging due to low carbon stabilization and buffering capacity, especially in crops with low SOC-input, like maize. 
    Current state-of-the-art knowledge on SOC dynamics indicates a crucial role of microbially derived carbon, implying that microbial growth and carbon use efficiency are key regulators in SOC build-up. We propose that microbial carbon transformation can be harnessed to increase carbon sequestration potential of organic residues. Further, residue-associated N2O emissions can be mitigated by controlling N20-producing and -consuming microbes, e.g. using biological nitrification inhibitors exuded by plant roots. Hence, climate-smart agriculture should focus on “steering” residue and soil microbiomes involved in carbon and nitrogen cycling. 
    This project focuses on “nurturing” microbiomes in soil and organic inputs to realize a year-round contribution of the microbiome to carbon sequestration and mitigation of GHG emissions from arable sandy soils. The approach will focus on the combined use of refined organic residues and (cover-)crops capable of nitrification inhibition. 
    The research consortium is organized as follows: a Ph.D. at Utrecht University, focusing on optimizing microbial biomass development and necromass stabilization through organo-mineral complexation in composts; a PhD-student at NIOO determining the effects of these refined residues on soil, the nitrification inhibition potential of (cover-)crops and associated effects on GHG-emissions; a postdoc at the Louis Bolk Institute focused on feasibility, upscaling and the development of optimal scenarios for combined use of climate-smart residues and (cover-)crops. Common field experiments are envisaged in close cooperation with Aeres University of Applied Sciences for knowledge transfer to the future generation of farmers, as well as seed and composting companies and other actors in the agri-waste sector. 

    Initiator(s)

    dr. ir. Mariet Hefting, Utrecht University ;prof. dr. George Kowalchuk, Utrecht University;dr. Joost Keuskamp, Utrecht University;dr. Paul Bodelier, Netherlands Institute of Ecology (NIOO-KNAW);prof. dr. Eiko Kuramae,  Netherlands Institute of Ecology (NIOO-KNAW);dr. ir.  Nick van Eekeren, Louis Bolk Institute;dr. ir. Gera vanb Os, Aeres University of Applied Sciences

    Contact person

    Marief Hefting

    Email adress

    M.M.Hefting@uu.nl

  • Vastlegging koolstof: verdienmodellen en effecten op landschapsschaal.

    HAS Hogeschool wil met 2 lectoraten graag bijdragen aan deze Call. Het lectoraat Vitale plant op een gezonde bodem met lector Judith van de Mortel en het lectoraat Innovatief ondernemen met de Natuur met lector Daan Groot. We willen een bijdrage leveren aan kennisontwikkeling over vastlegging van koolstof in landbouwbodems. Het lectoraat Innovatief Ondernemen met Natuur onderzoekt onder andere verdienmodellen van natuurvriendelijke landbouwvormen en onderzoekmogelijkheden om verdienmodellen sluitend te krijgen door bijvoorbeeld maatschappelijke diensten in de verdienmodellen te verwaarden. Welke maatschappelijke diensten zijn er in klimaatrobuuste landbouwbodems en hoe kunnen we die verwaarden?  In welke mate kan klimaatrobuuste landbouw bijdragen aan het vastleggen van koolstof en hoe kunnen we dit proces versnellen door het maatregelen in de bodem te treffen? Welke effecten hebben deze maatregelen op landschapsschaal en hoe kunnen we dit in een verdienmodel verwerken? 

    HAS Hogeschool staat met beide benen in de praktijk en werkt daarom veel met agrariërs samen, daarom zou de HAS ook graag bij de agrariërs eerst ophalen wat er al gebeurt en waar er behoefte aan is. Vervolgens kan de HAS de vertaling van het fundamentele onderzoek naar praktische handvatten voor agrariërs maken.  

    Initiator(s)

    Dr. Judith van de Mortel (HAS Hogeschool; lector Gezonde plant op een duurzame en  vitale bodem);Daan Groot (HAS Hogeschool; Lector Innovatief 

    Contact person

    EJ Weerman

    Email adress

    e.weerman@has.nl

  • Optimizing use of organic residues in view of soil carbon sequestration and nutrient requirements

    Introducing the right (processed or raw) organic residues into a holistic soil nutrient and management plan helps balancing between plant nutrient requirements and environmental trade-offs. Because amendments differ in labile and recalcitrant compounds, they vary in decomposability and impacts on carbon sequestration, greenhouse gas emissions, nutrient and water availability. We are just starting to understand the relationships between the physicochemical properties of organic residues, soil matrix and their differential impacts. Building upon our experiments and models, this proposal aims to:
    1.    Create a fundamental understanding of how labile and recalcitrant organic matter components differentially affect soil carbon, water and nutrient cycling processes
    2.    Evaluate how these differences translate into carbon sequestration, GHG emissions, nutrient and water availability impacts, their seasonal dynamics and to maximize their synergy.
    3.    Develop and apply soil sensing techniques to evaluate “critical” and “optimal” SOM quality indicators in order to match the “soil demands” given available residues, at local and regional scales 
    4.    Translate our findings, together with our societal and private partners, into i) practical guidelines for management support on farm level, ii) decision support algorithms for optimized residue use (embedded within existing decision support tools) and iii) Critical Performance Indicators (KPIs) to further promote sustainable soil management. 

    We will perform mesocosm experiments to relate the chemical composition of soil amendments to carbon sequestration, GHG-emissions, nutrient and water availability for a range of soil types. Results will be validated by monitoring these impacts in various ongoing field experiments. Further upscaling is supported by field analysis for more than 3000 farms, participating in the national BodemUp-program. Mobile soil sensor technologies will be developed and applied for tailor-made estimates of decomposition, sequestration and soil functions. Findings will be integrated into the Open Soil Index Initiative, BLN indicators for agricultural soil quality and the carbon banking initiative.

    Initiator(s)

    Prof. dr. P. van Bodegom and Prof.Dr. Jan Willem Erisman, Leiden University, Department Environmental Biology, Leiden ;Prof. dr. Wim de Vries and Dr. Gerard Ros, Wageningen University, Environmental System Analysis Group, Wageningen;Dr. Janjo de Haan, Wageningen Plant Research, Open Teelten Lelystad, Wageningen UR, Lelystad;dr. Wim Bussink and dr. Yuki Fujita, Nutrient Management Institute, Wageningen;ing. H. Hekman, AgroCares Nutrient Intelligence;ir. Luuk van Wezel, ZLTO, farmers organisation

    Contact person

    Prof. dr. P. van Bodegom, Leiden University, Department Environmental Biology, Leiden

    Email adress

    p.m.van.bodegom@cml.leidenuniv.nl