Graphene electrodes for single-molecule spintronics

Samenvatting

Spintronics, which aims to use the spin state of the electrons to process information, is a promising technology to supplement conventional electronics based on the control of the electrical charge of the electrons. The field is rapidly evolving into molecular spintronics where transport takes place through individual molecules advancing in miniaturization and spin-state preservation. Magnetic molecules possess intrinsic spin and therefore a spin polarized current plays a more complex role. But, under what conditions this molecular spin-state can be read, controlled or written with a spin-polarized current? The viability of molecular spintronics rest in the ability to discern and control the spin state of this magnetic molecule. I propose to investigate quantum transport through single magnetic molecules in three-terminal devices (spin transistors) made of a source and drain to bias the molecule and a gate to access different redox states. Charging the molecule combined with other external stimuli like magnetic field are expected to induce changes in the magnetic structure of the molecule that could be exploited to read and write information. Single-molecule magnets are proposed as candidate molecules.

The combination of spin-polarized currents with magnetic molecules is expected to open a new route to address and switch the molecular spin. The fabrication of such spin transistor is now hindered by technological difficulties such as the oxidation of ferrometallic contacts. I propose to implement graphene electrodes to avoid such problem. The versatility of graphene allows for combination with ferromagnetic materials enabling to address the molecular spin with spin-polarized electrons. Moreover, the stability of these electrodes at room temperature paves the way to study magnetic molecules with spin-polarized currents at ambient conditions, which is crucial for future implementation. This research will allow for the first time to control the spin state of a single molecule with a spin-polarized current.

Output

Wetenschappelijk artikel

  • J. O. Island, H. S. J. van der Zant, M Menelaou, P. F. A. Alkemade, M Koole, A Holovchenko, N Aliaga-Alcalde, E Burzuri(2014): Fabrication of hybrid molecular devices using multi-layer graphene break junctions Journal of Physics: Condensed Matter pp. 47420 - 47420
  • K Park, Y Yamamoto, E Burzuri, M Warnock, A Cornia, H. S. J. van der Zant, X Zhong(2014): Franck−Condon Blockade in a Single-Molecule Transistor Nano Letters pp. 3191 - 3196
  • M. L. Perrin, H. S. J. van der Zant, E. Burzuri(2015): Single-molecule transistors Chemical Society Reviews pp. 902 - 919
  • E Burzuri, A Cornia, J Paaske, M Misiorny, H. S. J. van der Zant, K Park, M Leijnse, R Gaudenzi, M. R. Wegewijs(2015): Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet Physical Review B pp. 03544 - 03544
  • E Burzuri, R Frisenda, C Rovira, H. S. J. van der Zant, S. T. Bromley, C Franco, R Gaudenzi, M Mas-Torrent, J Veciana, I Alcon(2015): Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction Nano Letters pp. 3109 - 3114
  • H. S. J. van der Zant, R Gaudenzi, E Burzuri(2015): Observing magnetic anisotropy in electronic transport through individual single-molecule magnets Journal of Physics: Condensed Matter pp. 11320 - 11320
  • R Gaudenzi, J. O. Island, H. S. J. van der Zant, E Burzuri, J. de Bruijckere, T. M. Klapwijk(2015): Superconducting molybdenum-rhenium electrodes for single-molecule transport studies Applied Physics Letters pp. 22260 - 22260
  • E Burzuri(2016): Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes ACS Nano pp. 2521 - 2527
  • R Gaudenzi, E Burzuri(2016): Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule Nano Letters pp. 2066 - 2071
  • M. Mas-Torrent, C. Franco, H. S. J. van der Zant, J. de Bruijckere, C. Rovira, R. Aguado, T. M. Klapwijk, E. Burzurí, J. O. Island, R. Gaudenzi(2017): Transport mirages in single-molecule devices. The Journal of Chemical Physics pp. 09233 - 09233
  • R. Gaudenzi, C. Franco, C. Rovira, T. M. Klapwijk, M. Mas-Torrent, H. S. J. van der Zant, J. de Bruijckere, J. O. Island, R. Aguado, M. Wegewijs, E. Burzurí(2017): Proximity-induced Shiba states in a molecular junction Physical Review Letters pp. Accep - Accep

Kenmerken

Projectnummer

680-47-435

Hoofdaanvrager

Dr. E. Burzuri

Verbonden aan

Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft

Uitvoerders

Dr. E. Burzuri

Looptijd

01/01/2014 tot 18/04/2017