Realizing quantum feedback control in circuit quantum electrodynamics

Samenvatting

Measurement and feedback control [1] of quantum systems is critical to developing quantum-enhanced computation technologies for the 21st century. Realizing a fault-tolerant quantum computer that factors large numbers exponentially faster using Shor's algorithm [2], for example, hinges on quantum measurement and feedback control to correct small errors induced by decoherence and imperfect gate operations.

Superconducting circuits [3] are major contenders in the race to 'go quantum' [4]. In the decade since quantum coherence in the Cooper-pair box was demonstrated [5], significant progress has been made to increase the coherence time of quantum bits (qubits) and improving gate and measurement fidelities. To date, superconducting circuits are the only solid-state quantum-information-processing architecture to have realized the simplest two-qubit quantum algorithms [6]. But control of superconducting circuits remains open-loop. To realize the next milestone, quantum error correction [7,8], feedback schemes must now be realized.

I propose to develop quantum feedback control for superconducting circuits using circuit quantum electrodynamics (QED) [9-11]. Ultimately, this research plan will culminate in the solid-state realization of simple quantum error correction codes. Two routes will be pursued: (1) measurement-based and (2) fully-coherent feedback. Approach (2) will be implementable first, owing to higher fidelity of gate operations over readouts presently in circuit QED. Approach (1), while technically more challenging, will have greater impact outside of quantum computing. In particular, the broader area of quantum feedback control is largely measurement based, with many theoretical proposals awaiting experimental realization. My team will develop quantum microwave circuits and room-temperature electronics to implement for the first time feedback schemes originally proposed for cavity QED and semiconductor mesoscopics. On the way to realizing simple quantum error correction codes [12], we investigate wavefunction collapse/uncollapse by measurement [13], observe quantum jumps and the Zeno effect [14], stabilize qubits [15], and produce entanglement by measurement and feedback [16-19].

Output

Hoofdstuk in boek

  • L. DiCarlo, D. Riste(2016): Superconducting Devices in Quantum Optics pp. 187 - 216

Wetenschappelijk artikel

  • D. Riste, C.C. Bultink, K.W. Lehnert, L Di Carlo(2012): Feedback Control of a Solid-State Qubit Using High-Fidelity Projective Measurement Physical Review Letters pp. 240502-1-240502-5
  • D Riste, J.G. van Leeuwen, H.S. Ku, K.W. Lehnert, L Di Carlo(2012): Initialization by Measurement of a Superconducting Quantum Bit Circuit Physical Review Letters pp. 050507-1-050507-5
  • M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, R. J. Schoelkopf(2012): Realization of three-qubit quantum error correction with superconducting circuits Nature pp. 382 - 385 ISSN: doi:10.1038/nat.
  • D. Riste, M. Dukalski, C.A. Watson, G. de Lange, M.J. Tiggelman, Ya.M. Blanter, K.W. Lehnert, R.N. Schouten, L Di Carlo(2013): Deterministic Entanglement of Superconducting Qubits by Parity Measurement and Feedback Nature pp. 350 - 354
  • (2013): Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit Nature Communications
  • D. Riste, C.C. Bultink, M.J. Tiggelman, R.N. Schouten, K.W. Lehnert, L Di Carlo(2013): Millisecond Charge-Parity Fluctuations and Induced Decoherence in a Superconducting Qubit Nature Communications pp. 1913-1913-6
  • J.P. Groen, D. Riste, L. Tornberg, J. Cramer, P.C. de Groot, T. Picot, G. Johansson, L Di Carlo(2013): Partial-Measurement Measurement Backaction and Nonclassical Weak Values in a Superconducting Circuit Physical Review Letters pp. 090506-1-090506-5
  • V. Ranjan, G. de Lange, R. Schutjens, T. Debelhoir, J.P. Groen, D. Szombati, d.J. Thoen, T.M. Klapwijk, R. Hanson, L Di Carlo(2013): Probing Dynamics of an Electron-Spin Ensemble via a Superconducting Resonator Physical Review Letters pp. 067004-1-067004-5
  • G. de lange, D. Riste, M.J. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R.N. Schouten, L Di Carlo(2014): Reversing Quantum Trajectories with Analog Feedback Physical Review Letters pp. 080501-1-080501-5
  • O.P. Saira, J.P. Groen, J. Cramer, M. Meretska, G. de Lange, L Di Carlo(2014): Entanglement Genesis by Ancilla-Based Parity Measurement in 2D Circuit QED Physical Review Letters pp. 070502-1-070502-5
  • D. Riste, S. Poletto, M.Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, L. DiCarlo(2015): Detecting bit-flip errors in a logical qubit using stabilizer measurements Nature Communications pp. 6983-1-6983-6

Publicatie bedoeld voor een breed publiek

  • D. Riste, G. de Lange, L Di Carlo, B. van Wayenburg(2013): Delft scientists steal a glance at Schr√∂dinger's cats
  • G. de Lange, D. Riste, L Di Carlo, B. van Wayenburg(2013): Delftse wetenschappers kijken stiekem naar Schr√∂dingers katten

Publieksinformatie

  • L DiCarlo(2011): PUBLIC PRESENTATION: Superconducting circuits that process information with quantum magic
  • D. Riste, J. G. van Leeuwen, M. Shakori, L DiCarlo(2012): POSTER: Quantum measurement of highly-coherent superconducting qubits in circuit Q3D
  • M. Seijlhouwer(2013): TU gluurt ongestraft naar quantumkatten

Kenmerken

Projectnummer

680-47-508

Hoofdaanvrager

Dr. L. DiCarlo

Verbonden aan

Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft

Uitvoerders

Dr. L. DiCarlo, Dr. S. Poletto, Drs. R. Vishal

Looptijd

01/01/2011 tot 25/08/2016