Nanowire qubits

Samenvatting

Our group has recently demonstrated a quantum bit in a semiconductor nanowire that is very easy to operate (Nature, December 23, 2010). Here I propose to use this nanowire qubit in order to demonstrate and control quantum entanglement, yet unexplored in semiconductor nanostructures. Our qubit uses the electron?s spin as the two-level quantum state. Electrical signals control an electron?s movement within a nanowire, which, due to the strong coupling between spin and orbit in our material, rotates the electron spin over any desired angle. This all-electrical control has enormous practical advantages, making the nanowire qubit the perfect building block for entanglement studies. I propose an unambiguous demonstration of controlled entanglement by performing two-qubit gate operations and measuring two-particle correlations that can be checked against Bell?s inequalities. To reach these ambitious goals we will first improve our material system (use core/shell wires and compare InAs with InSb) and extend our present devices to include on-chip charge sensors. My expertise from my Ph.D. research at Cornell University on ultra-fast spintronics positions me well to fulfil the technical challenges, enabling us to start the multi-qubit operations quickly. The success of this proposal will open new directions in quantum information science since our nanowire qubits can be integrated with quantum optics such that quantum information from the spins can be transported with photons over long distances.

Output

Wetenschappelijk artikel

  • S.M. Frolov, J. Danon, S. Nadj-Perge, K. Zuo, J.W.W. van Tilburg, V.S. Pribiag, J.W.G. van den Berg, E.P.A.M. Bakkers, L.P. Kouwenhoven(2012): Suppression of Zeeman gradients by nuclear polarization in double quantum dots Physical Review Letters pp. 236805 - 236809
  • S. Nadj-Perge, V.S. Pribiag, J.W.G. van den Berg, K. Zuo, S.R. Plissard, E.P.A.M. Bakkers, S.M. Frolov, L.P. Kouwenhoven(2012): Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires Physical Review Letters pp. 166801 - 166805
  • V. S. Pribiag(2013): Electrical control of single hole spins in nanowire quantum dots Nature Nanotechnology pp. 170 - 174
  • V. S. Pribiag(2013): Fast spin-orbit qubit in an indium antimonide nanowire Physical Review Letters pp. 066806 - 066806
  • V. S. Pribiag(2014): Edge Mode Superconductivity in a Two Dimensional Topological Insulator Submitted for review in a refereed journal pp. 0 - 0
  • V. S. Pribiag(2014): Spin-orbit interaction in InSb nanowires Submitted for review in a refereed journal pp. 0 - 0

Publieksinformatie

  • V.S. Pribiag, S. Nadj-Perge, S.M. Frolov, J.W.G. van den Berg, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven(2012): Spin-orbit-mediated control of single hole spins in InSb nanowire quantum dots
  • V. S. Pribiag(2012): Qubits in semiconductor nanowires
  • V.S. Pribiag, S.M. Frolov, S. Nadj-Perge, J.W.G. van den Berg, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven(2012): Spin-orbit qubits in InAs and InSb nanowires
  • V.S. Pribiag, S. Nadj-Perge, S.M. Frolov, J.W.G. van den Berg, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven(2012): Electrical control of single hole spins in InSb nanowire quantum dots
  • V. S. Pribiag(2013): Spin-orbit-mediated control of electron and hole spins in InSb nanowire quantum dots
  • V. S. Pribiag(2014): Spin transport in semiconductor nanowires and 2D topological insulators
  • V. S. Pribiag(2014): Electron and Hole Spin Transport in InSb nanowire quantum dots
  • V. S. Pribiag(2014): Spin Transport in InSb Nanowires and InAs/GaSb Heterostructures
  • V. S. Pribiag(2014): Superconducting edge-mode transport in InAs/GaSb heterostructures

Kenmerken

Projectnummer

680-47-420

Hoofdaanvrager

Dr. V. S. Pribiag

Verbonden aan

Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft

Uitvoerders

Dr. V. S. Pribiag

Looptijd

01/10/2011 tot 19/02/2015