Ruim 1 miljoen voor vier internationale projecten op het gebied van innovatief materialenonderzoek

22 februari 2016

Binnen de vierde call voor onderzoeksvoorstellen binnen het Europese samenwerkingsprogramma ERA-NET op het gebied van 'Materials Science en Engineering' (M-ERA.NET) zijn vier projecten met een gezamenlijk budget van ruim drie miljoen euro toegekend aan projecten waarbij Nederlandse onderzoeksgroepen zijn betrokken. Het gaat om projecten van Alexander Kros (UL) en Nico Sommerdijk (TU/e), Henny Bouwmeester (UT), Ruud van Ommen (TUD) en Arjan Mol (TUD).

NWO Chemische Wetenschappen stelt ruim één miljoen euro beschikbaar voor de vier geselecteerde Nederlandse onderzoeksgroepen. In totaal worden in deze call 20 internationale samenwerkingsprojecten gehonoreerd. De Nederlandse onderzoekers konden voorstellen indienen voor nieuwsgierigheidsgedreven onderzoek binnen de CW onderzoekshoofdlijn Chemistry of Materials in de vorm van cross-disciplinaire projecten op het gebied van materialenonderzoek, die ook fysische en technologische insteek konden hebben. Onderwerpen waarop o.a. ingediend kon worden waren: “High performance synthetic and biobased composites”, “Materials for Sustainable and Affordable Low Carbon Energy Technologies”, en “Tailoring of bioactive material surfaces for health applications”.

De vier projecten met Nederlandse partners in dit M-ERA-NET zijn:

Designed nanostructured bioactive surfaces for precision medicines – MediSURF
Nederlandse partners: Dr. Alexander Kros (LEI, coördinator) en Prof. Nico Sommerdijk (TUE, partner)
The most versatile natural smart nanomaterials - surpassing any man-made material - are proteins that underlay most biological functions. Proteins can be efficiently and cost-effectively produced by microorganisms as cellular factories. To this end, we propose to establish membrane-anchored polypeptide skeletons (MAPS) as a new type of a highly controlled nanoscale-bioactive surfaces with full control over functional density. We aim to rationally design those bioinspired materials from the bottom up using an interdisciplinary approach combining chemistry, biology and state-of-the-art imaging techniques, based on the expertise of this consortium. MAPS will be assembled on the surface of lipid bilayers of liposomes as well as on lipid bilayer coated mesoporous silica nanoparticles (LB-MSN). The technological potential of MAPS for medical applications will be demonstrated on advanced cancer vaccines, combining targeted delivery and cellular internalization of tumour antigens, activators of immunity or anticancer drugs which will be tested in cell lines and in vivo. Effective and safe cancer vaccines are in major demand. Control of the periodic arrangement of antigens similar to the regularity of the viral capsid, possible with the proposed MAPS technology, could be a game changer here.

Designing rules for enhancing SURface KINetics in functional OXides for clean energy technologies - SURKINOX
Nederlandse partner: Prof. dr. H.J.M. Bouwmeester (UT, partner)
Despite excellent progress in development and manufacturing technologies of ion and mixed ion-electron conductors, fuel cells, electrolysers and gas separation membranes do not exhibit the anticipated performance. There is a need for expanding knowledge on surface exchange mechanisms, their corresponding kinetics and the relation between surface and bulk characteristics in nano-engineered materials and assemblies. The SURKINOX project will develop novel approaches to design property-driven materials with nano-functionalized surfaces and nano-structured thin films as well as necessary experimental techniques to reveal surface exchange parameters. This will have a significant technological impact by increasing system efficiency. The project benefits to academia for the generic knowledge applicable to various processes embedding catalytic reactions and to value-chain industries: powder and ceramics suppliers, technology developers and end-users (power plants, CO2 intensive industries).

Cost-effective Atomic Layer Deposition Processes for Large Area Coating Applications – CALDERA
Nederlandse partner: Dr. ir. J. Ruud van Ommen (TUD, partner)
ALD has proven a key enabling technology for the continuous downscaling of microelectronics. Recently, novel reactor designs have enabled the application of ALD technology outside cleanrooms, targeting large area applications in photovoltaics, flexible electronics and powder coating. However, due to the large surface area involved in these applications, precursor cost is becoming a major bottleneck for industrial upscaling of ALD in these emerging application domains. Moreover, high volume usage of the currently used ALD precursors leads to severe safety risks. Within this project, we will address these challenges by developing and validating safe, cost-effective ALD processes. Reducing the cost of ALD processes will remove the obstacles for implementation of large area ALD at the industrial level, such that the whole value chain from equipment and material manufacturers up to the end-user applications will be able to enjoy the benefits of high quality nanocoatings deposited by ALD.

Corrosion inhibiton and dealloying descriptors – COIN DESC
Nederlandse partner: prof. dr. Arjan Mol (TUD, partner)
COIN DESC is a basic research project targeted at (1) the design of corrosion resistant copperbased alloy systems by using corrosion inhibitors and at (2) deepening the mechanistic
understanding of corrosion inhibition. The specific innovation objective of the project is to identify the physically-sound corrosion inhibition and dealloying descriptors, depending on the metallic material and environment to which the material is exposed. Such descriptors are mandatory for the construction of a new corrosion inhibitor virtual design framework which will allow a faster and more rational based screening of new specifically designed corrosion inhibitors with superior characteristics. These principle objectives will be achieved by means of an iterative learning, synergistic modelling-experimental approach pursuing the ICME-oriented paradigm, consisting of multi-scale modelling and simulation, chemical synthesis of new materials, multi-scale experimental analysis and testing, and validation.

In maart 2016 wordt een nieuwe call van het M-ERA-NET (EU CoFund) op de NWO CW-website gepubliceerd. Voor meer informatie over deze M-ERA.NET call en de 2016 call :website van M-ERA.NET.

Bron: NWO